Муниципальное бюджетное общеобразовательное учреждение «Кункурская средняя общеобразовательная школа имени Героя Социалистического Труда Пурбуева Дашидондок Цыденовича»

от « » 202 г.	« » 202 г.
Протокол №	
педагогического совета	Директор
Принята на заседании	«УТВЕРЖДАЮ»

Дополнительная общеразвивающая программа по робототехнике

«SkyNet» (уровень базовый)

Направленность: техническая

Возраст обучающихся: от 10 до 14 лет

Срок реализации программы: 1 год

Общее количество часов: 72

Разработчик: Бадмаев Баясхалан, Учитель истории и обществознания

Содержание

Раздел № 1 «Комплекс основных характеристик программы»

1.1. Пояснительная записка;
1.2. Цель и задачи программы;
1.3. Содержание программы;
1.4. Планируемые результаты;
Раздел № 2 «Комплекс организационно-педагогических условий»
2.1. Календарный учебный график;
2.2. Условия реализации программы;
2.3. Формы аттестации;
2.4. Оценочные материалы;
2.5. Методические материалы;
Список литературы;
Приложения к программе.

Раздел № 1. Комплекс основных характеристик программы

1.1. Пояснительная записка

ДООП разработана с учетом следующих нормативно-правовых документов:

- Федеральный Закон от 29.12.2012 № 273-ФЗ «Об образовании в РФ»;
- Федеральный проект «Успех каждого ребенка» (утв. 7 декабря 2018 г.);
- Приказ Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказ Министерства просвещения РФ от 27 июля 2022 г. N 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (01.03.2023 г);
- Методические рекомендации по проектированию дополнительных общеобразовательных общеразвивающих программ от 18.11.2015. Министерство образования и науки РФ;
- Концепция развития дополнительного образования детей до 2030 года. Утверждена распоряжением Правительства РФ от 31.03.2022 г. № 678-р;
- Устав МБОУ «Кункурская средняя общеобразовательная школа имени Героя Социалистического Труда Пурбуева Дашидондок Цыденовича»

Программа направлена на привлечение учащихся к современным технологиям конструирования, программирования и использования роботизированных устройств.

Актуальность программы

Воспитать поколение свободных, образованных, творчески мыслящих граждан возможно только в современной образовательной среде. Программа представляет учащимся технологии 21 века. Сегодняшним школьникам предстоит работать по профессиям, которых пока нет, использовать технологии, которые еще не созданы, решать задачи, о которых мы можем лишь догадываться. Школьное образование должно соответствовать целям опережающего развития. Для этого в школе должно быть обеспечено изучение не только достижений прошлого, но и технологий, которые пригодятся в будущем, обучение, ориентированное как на знаниевый, так и деятельностный аспекты содержания образования. Таким требованиям отвечает робототехника.

Одним из динамично развивающихся направлений программирования является программное управление робототехническими системами. В период развития техники и технологий, когда роботы начинают применяться не только в науке, но и на производстве, и в быту, актуальной задачей для занятий по «Робототехнике» является ознакомление учащихся с данными инновационными технологиями.

Робототехника - сравнительно новая технология обучения, позволяющая вовлечь в процесс инженерного творчества детей, начиная с младшего школьного что позволит обнаружить и развить навыки учащихся в направлениях как мехатроника, искусственный интеллект, программирование и т.д. Использование методик этой технологии обучения позволит существенно улучшить навыки учащихся в таких дисциплинах как математика, физика, информатика. Возможность прикоснуться к неизведанному миру роботов для современного ребенка является очень мощным стимулом к познанию нового, преодолению формированию потребителя инстинкта И стремления К самостоятельному созиданию.

Новые принципы решения актуальных задач человечества с помощью роботов, усвоенные в школьном возрасте (пусть и в игровой форме), ко времени окончания вуза и начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам.

Новизна

Программа имеет ряд отличий от уже существующих аналогов, которые предполагают поверхностное освоение элементов робототехники подходом преимущественно демонстрационным К интеграции предметами. Особенностью данной программы является нацеленность на конечный результат, т.е. обучающийся создает не просто внешнюю модель робота, дорисовывая в своем воображении его возможности, он создает действующее устройство, которое решает поставленную задачу.

Программа построена на обучении в процессе практики и позволяет применять знания из разных предметных областей, которые воплощают идею развития системного мышления у каждого учащегося, так как системный анализ — это целенаправленная творческая деятельность человека, на основе которой обеспечивается представление объекта в виде системы. Творческое мышление - сложный многогранный процесс, но общество всегда испытывает потребность в людях, обладающих нестандартным мышлением.

Учебный план Программы связан с мероприятиями в научно-технической сфере для детей (турнирами, соревнованиями), что позволяет, не выходя за рамки учебного процесса, принимать активное участие в конкурсах различного уровня.

Адресат программы

Возраст детей, участвующих в реализации данной программы 10-14 лет. Основным видом деятельности детей этого возраста является обучение, содержание и характер которого существенно изменяется. Ребёнок приступает к систематическому овладению основами разных наук и особенно ярко проявляет себя во внеучебной деятельности, стремится к самостоятельности. Он может быть настойчивым, невыдержанным, но, если деятельность вызывает у ребёнка положительные чувства появляется заинтересованность, и он более осознанно начинает относиться к обучению.

Учащиеся начинают руководствоваться сознательно поставленной целью, появляется стремление углубить знания в определенной области, возникает стремление к самообразованию. Учащиеся начинают систематически работать с дополнительной литературой.

Для обучения принимаются все желающие, проявившие интерес к изучению робототехники, специальных способностей в данной предметной области не требуется.

Объем и сроки освоения

Объем программы – 72 ч.

Программа рассчитана на один год обучения.

Форма обучения – очная.

Особенности организации образовательного процесса

Форма проведения занятий планируется как для всей группы (групповая) - для освещения общих теоретических и других вопросов, передача фронтальных знаний, так и мелкогрупповые по 2-3 человека для индивидуального усвоения полученных знаний и приобретения практических навыков. Это позволяет дифференцировать процесс обучения, объединить такие противоположности, как массовость обучения и его индивидуализацию.

Режим занятий по программе

Продолжительность одного академического часа - 45 мин.

Перерыв между учебными занятиями – 10 минут.

Общее количество часов в неделю – 2 часа.

Занятия проводятся 2 раза в неделю по 1 часу.

1.2. Цель и задачи ДООП

Цель Программы: создание условий развития конструктивного мышления ребёнка средствами робототехники, формирование интереса к техническим видам творчества, популяризация инженерных специальностей

Задачи Программы:

Личностные

- •воспитание коммуникативных качеств посредством творческого общения учащихся в группе, готовности к сотрудничеству, взаимопомощи и дружбе;
- воспитание трудолюбия, аккуратности, ответственного отношения к осуществляемой деятельности;
 - формирование уважительного отношения к труду;
 - развитие целеустремленности и настойчивости в достижении целей.

Метапредметные

- умение организовать рабочее место и соблюдать технику безопасности;
- умение сопоставлять и подбирать информацию из различных источников (словари, энциклопедии, электронные диски, Интернет источники);
- умение самостоятельно определять цель и планировать алгоритм выполнения задания;
- умение проявлять рационализаторский подход при выполнении работы, аккуратность;
 - умение анализировать причины успеха и неудач, воспитание самоконтроля.
- умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- •понимание основ физики и физических процессов взаимодействия элементов конструктора.

Предметные

- познакомить с конструктивными особенностями и основными приемами конструирования различных моделей роботов, компьютерной средой, включающей в себя графический язык программирования ZMROBO;
- •научить самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.);
- •научить создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу;
- научить разрабатывать и корректировать программы на компьютере для различных роботов;
 - уметь демонстрировать технические возможности роботов.

1.3. Содержание программы

Учебный план

No	Тема занятий	Колич. часов		СОВ	Формы
п/п		Всего	Теория	Практи ка	аттестации/контроля
1.	Раздел 1.Вводное занятие. Правила ТБ. Основные компоненты робота.	1	1		Вводная беседа
2	Раздел 2. Основы алгоритмики. Среда программирования Scratch 3	20	6	14	
2.1	Среда программирования Scratch 3. Интерфейс среды Scratch.	13	2	6	Беседа. Опрос
2.2	Среда программирования Scratch 3. Основные понятия.	14	2	4	Беседа
2.3	Сенсоры. Программирование сенсоров.	13	2	4	Самостоятельная работа
3	Раздел 3. Конструирование механизмов и роботов ZMROBO	20	6	14	
3.1	Знакомство с набором ZMROBO Детали конструктора.	6	2	4	Вводная беседа
3.2	Сборка простейших механизмов по инструкциям. Механическая передача.	6	2	4	Самостоятельная работа
3.3	Моторы набора. Характеристики. Конструирование узлов и механизмов с моторами.	6	2	4	Практическое задание
3.4	Сборка простейшего робота по инструкции.	2		2	Самостоятельная работа
4	Раздел 4. Программирование роботов. ZMROBO	20	6	14	
4.1	Изучаем интерфейс ПО	6	2	4	Беседа
4.2	Программируем моторы робота.	6	2	4	Составление программы
4.3	Программирование датчиков	6	2	4	Составление программы
4.4	Игровой практикум «Выставка роботов»	2		2	Педагогическое наблюдение
5	Раздел 5. Соревнования роботов.	10	2	8	
5.1	Правила соревнований «Кегельринг» и «Сумо роботов». Конструирование и программирование робота.	5	1	4	Беседа, Опрос, Демонстрация роботов
5.2	Игровой практикум. Соревнования «Кегельринг», «Сумо»	5	1	4	Педагогическое наблюдение. Выставка моделей роботов
	Итоговое занятие	1		1	Тестирование. Мини- соревнование роботов

YERONO				
ИТОГО	72	21	51	

Содержание учебно-тематического плана в приложении № 1

1.4. Планируемые результаты

В процессе реализации образовательной программы, обучающиеся получают определенный объем знаний, приобретают специальные умения и навыки, происходит воспитание и развитие личности.

Личностные результаты:

- проявляет такие коммуникативными качествами как готовность к сотрудничеству и взаимопомощи и умение к созидательной коллективной деятельности;
- проявляет трудолюбие, ответственность по отношению к осуществляемой деятельности;
 - проявляет целеустремленность и настойчивость в достижении целей.

Метапредметные результаты:

- умеет организовать рабочее место и содержит конструктор в порядке, соблюдает технику безопасности;
 - умеет работать с различными источниками информации;
 - умеет самостоятельно определять цель и планировать пути ее достижения;
- проявляет гибкость мышления, способность осмысливать и оценивать выполненную работу, анализировать причины успехов и неудач, обобщать;
- умеет проявлять рационализаторский подход и нестандартное мышление при выполнении работы, аккуратность;
- умеет с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- проявляет настойчивость, целеустремленность, умение преодолевать трудности.

Предметные результаты:

- знает основную элементную базу (светодиоды, кнопки и переключатели, потенциометры, резисторы, конденсаторы, соленоиды, пьезодинамики)
 - знает виды подвижных и неподвижных соединений в конструкторе, принципы

работы простейших механизмов, видов механических передач;

- умеет использовать простейшие регуляторы для управления роботом;
- владеет основами программирования в компьютерной среде моделирования ZMROBO;
 - понимает принципы устройства робота как кибернетической системы;
- умеет собрать базовые модели роботов и усовершенствовать их для выполнения конкретного задания;
 - умеет демонстрировать технические возможности роботов.

Учащийся должен знать / понимать:

- влияние технологической деятельности человека на окружающую среду и здоровье;
- область применения и назначение инструментов, различных машин, технических устройств (в том числе компьютеров);
 - основные источники информации;
 - виды информации и способы её представления;
 - основные информационные объекты и действия над ними;
- назначение основных устройств компьютера для ввода, вывода и обработки информации;
 - правила безопасного поведения и гигиены при работе с компьютером.

Уметь:

- получать необходимую информацию об объекте деятельности, используя рисунки, схемы, эскизы, чертежи (на бумажных и электронных носителях);
- создавать и запускать программы для забавных механизмов, в рамках электронного конструктора ZMROBO;
- применять основные понятия, использующие в робототехнике: мотор, датчик наклона, датчик расстояния, порт, разъем, USB-кабель, меню, панель инструментов.

Комплекс организационно-педагогических условий 2.1. Календарный учебный график

№ п/п	количество учебных недель	количество учебных часов по периодам или модулям	начало учебного года	окончание учебного года	каникулярное время
	36	72	1.09.2023	31.05.2024	31.05-1.09

2.2. Условия реализации программы

Материально-техническое обеспечение

- учебная аудитория;
- столы учебные 9 шт;
- стулья ученические 18 шт;
- планшеты 6 шт;
- компьютеры (ноутбуки) 8 шт.;
- Интерактивная панель 65";
- наборы конструкторов ZMROBO 6 комплектов

Информационное обеспечение

- Аудио, видео, фотоматериалы, интернет источники.
- Организационно-педагогические средства (учебно-программная документация: образовательная программа, дидактические материалы).
 - Материалы сайта http://zmrobo.ru/intelligencestorm

2.3. Формы аттестации

Текущий контроль уровня усвоения материала осуществляется по результатам выполнения учащихся практических заданий. Итоговый контроль реализуется в форме соревнований (олимпиады) по робототехнике, представлении итоговой работы.

Способы проверки знаний учащихся: педагогическое наблюдение, опрос, зачет, практические занятия, викторины, беседы, анализ творческих работ, участие во внутри школьных турнирах/соревнованиях и других мероприятиях.

Способы определения результативности заключаются в следующем:

- работы учащихся будут зафиксированы на фото и видео в момент демонстрации созданных ими роботов из имеющихся в наличии учебных конструкторов по робототехнике.
- фото и видео материалы по результатам работ учащихся будут размещаться на официальном сайте школы.
- фото и видео материалы по результатам работ учащихся будут представлены для участия на фестивалях и олимпиадах разного уровня.

Критериями выполнения программы служат: знания, умения и навыки учащихся, массовость и активность участия учащихся в мероприятиях данной направленности.

2.4. Оценочные материалы.

Оценивание развития учащихся проводится на основе следующего перечня компетенций:

Технические: инженерно-пространственное конструкторское, алгоритмическое и логическое мышление

Гибкие: творческое мышление, умение работать в коллективе, эффективная коммуникация, контроль эмоционально-волевой сферы.

Текущий контроль сформированности результатов освоения программы осуществляется с помощью нескольких инструментов на нескольких уровнях:

- -на каждом занятии: опрос, выполнение заданий, самоконтроль ученика;
- -выполнение поставленных задач, взаимоконтроль учеников, минисоревнования.

Показатели выполнения практических заданий:

- решают практические задачи по образцу, следуя прямым указаниям педагога;
- умеют выполнять задания, внося изменения в образец, манипулируя изученным материалом, но обращаются за помощью к педагогу,

• самостоятельно формируют алгоритм, применяя все ранее изученные алгоритмические конструкции.

2.5. Методические материалы.

Учащиеся одной возрастной группы занимаются в объединении постоянного состава. Содержание программы может быть скорректировано в зависимости от уровня подготовки учащихся. Некоторые темы взаимосвязаны с курсом «Программирование», изучаемым в школе и могут с одной стороны служить пропедевтикой, с другой стороны опираться на него. В процессе обучения используются разнообразные методы обучения.

Традиционные:

- объяснительно-иллюстративный метод (лекция, рассказ, работа с литературой и т.п.);
 - репродуктивный метод;
 - метод проблемного изложения;
 - частично-поисковый (или эвристический) метод;
 - исследовательский метод.

Современные:

- метод проектов:
- метод обучения в сотрудничестве;
- метод портфолио;
- метод взаимообучения.

В Программу включены содержательные линии:

- аудирование умение слушать и слышать, т.е. адекватно воспринимать инструкции;
 - чтение осознанное самостоятельное чтение языка программирования;
- говорение умение участвовать в диалоге, отвечать на заданные вопросы, создавать монолог, высказывать свои впечатления;

- пропедевтика круг понятий для практического освоения детьми с целью ознакомления с первоначальными представлениями о робототехнике и программирование;
 - творческая деятельность конструирование, моделирование, проектирование.

Список литературы

Литература для учащихся

- 1.Голиков Д.А. Scratch для юных программистов. СПб.: BHV, 2017, ISBN 978-5-9775-3739-1
- 2.Голиков Д.А. Scratch и Arduino. 18 игровых проектов для юных программистов микроконтроллеров. СПб.: BHV,2018, ISBN 978-5-9775-3982-1
- 3. Григорьев А.Т., Винницкий Ю.А. Игровая робототехника для юных программистов и конструкторов: mBot и mBlock. –СПб.: BHV, 2019. ISBN 978-5-9775-4030-8.
- 4. Григорьев А.Т., Винницкий Ю.А. Scratch и Arduino для юных программистов и конструкторов. СПб.: BHV, 2017, ISBN 978-5-9775-3937-1
- 5. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука, 2013. 319 с. ISBN 978-5-02-038-200-8.
- 6. Филиппов С.А Уроки робототехники. Конструкция. Движение. Управление. М.: Лаборатория знаний. 2017. ISBN 978-5-00101-074-6

Литература для педагога

- 1.Джереми Блум. Изучаем Arduino. Инструменты и методы технического волшебства. СПб.: BHV. 2018. ISBN 978-5-9775-3585-4
- 2. Кириченко П.В. Электроника. Цифровая электроника для начинающих. СПб.: BHV. 2019. ISBN 978-5-9775-4010-0
- 3. КопосовД.: Робототехника. 5-8 классы. Конструктор SPIKE. Учебное пособие
- 4. Косаченко С.В.: Программирование учебного робота mBot. -Томск, 2019 5. Момот М. Мобильные роботы на базе Arduino, 2-е изд.. СПб.: BHV. 2018. ISBN 978-5-9775-3861-9

Интернет-ресурсы

1.https://www.lab169.ru

- 2. Электронный архив всех рассмотренных проектов:
- ftp://ftp.bhv.ru/9785977540308.zip
- 3.Видео-инструкция по сборке робота в базовой комплектации https://youtu.be/nxawcYjT0SM
- 4.Видео-инструкция по сборке робота в конфигурации с сервомотором и гироскопом https://youtu.be/UnB6a7yYWH8
 - 5. https://education.lego.com/ru-ru/downloads/spike-app/software
- 6.<u>https://www.microsoft.com/ru-ru/p/spike-lego-education/9nfqz9rdnd2q?rtc=1&activetab=pivot:overviewtab</u>
 - 7. Сайт виртуального программирования роботов https://lab.open-roberta.org/
 - 8. Робототехника ZMROBO http://zmrobo.ru/intelligencestorm

Приложение №1

	Содержание учебно-тематического плана				
No	Тема занятия	Теоретическая часть	Практическая часть	Формы контроля	
	Вводное занятие. Правила ТБ. Основные компоненты робота.	Рассказ о развитии робототехники в мировом сообществе и, в частности, в России. Правила техники безопасности.		Собеседование. Устный опрос	
	Раздел	2. Основы алгоритмики. Среда прог	раммирования Scratch 3		
	Среда программирования Scratch 3. Интерфейс среды Scratch. Линейные алгоритмы.	Что такое SCRATCH. Понятие алгоритмизации. Понятие среда программирования.	Установка среды программирования SCRATCH. Запуск среды программирования на исполнение.	Собеседование	
	Среда программирования Scratch 3. Линейные алгоритмы. Понятие исполнитель, код исполнителя.	Понятие линейного алгоритма, параметра.	Составление линейных алгоритмов в среде. Использование различных блоков для составления линейных алгоритмов в среде SCRATCH.	Презентация	
	Команда повторения.	Назначение команды «повторить».	Использование команды «повторить» при написании алгоритмов для спрайта.	Решение задач	
	Команда повторения.	Назначение команды «повторить».	Использование команды «повторить» при написании алгоритмов для спрайта.	Решение задач	
	Рисуем в Scratch с помощью исполнителя. Расширение «Перо».	Понятие исполнитель, код исполнителя. Понятие расширения набора команд.	Формирование навыков по составлению циклических алгоритмов	Беседа. Устный опрос	
	Рисуем в Scratch с помощью исполнителя. Расширение «Перо».	Понятие исполнитель, код исполнителя. Понятие расширения набора команд.	Формирование навыков по составлению циклических алгоритмов	Беседа. Устный опрос	
	Блоки «Внешность». Анимация. Циклы.	Понятие анимации	Формирование умений и навыков составлять простейшие программы с циклом	Беседа	
	Блоки «Внешность». Анимация. Циклы.	Понятие анимации	Формирование умений и навыков составлять простейшие программы с	Беседа	

		циклом	
Команда ветвления. Блоки «Управление».	Команда ветвления	Формирование умения составлять простейшие программы с командой ветвления.	Тестирование
Команда ветвления. Блоки «Управление».	Команда ветвления	Формирование умения составлять простейшие программы с командой ветвления.	Беседа
Сенсоры. Программирование сенсоров.	Понятие сенсора. Программирование сенсоров и команда ветвления.	Формирование умения составлять программы с проверкой условия	Устный опрос.
Сложные алгоритмы. Команда ветвления в цикле.	Команда ветвления в цикле.	Формирование ЗУН использовать цикл и команду ветвления при программировании исполнителя.	Беседа
Сложные алгоритмы. Команда ветвления в цикле.	Команда ветвления в цикле.	Формирование ЗУН использовать цикл и команду ветвления при программировании исполнителя.	Беседа
Сложные алгоритмы. Команда ветвления в цикле.	Команда ветвления в цикле.	Формирование ЗУН использовать цикл и команду ветвления при программировании исполнителя.	Устный опрос
Игра «Поймай звезду»	Сложные алгоритмические конструкции.	Закрепление и отработка ЗУН использовать цикл и команду ветвления при программировании исполнителя.	Коллективный анализ программ.
	Раздел 3. Конструирование механ	измов и роботов	
Знакомство с набором ZMROBO Детали конструктора.	Название деталей конструктора.	Формирование умений называть детали.	Беседа
Знакомство с набором ZMROBO Детали конструктора.	Название деталей конструктора.	Формирование умений называть детали и соединять их.	Устный опрос
Сборка простейших механизмов по инструкциям. Механическая передача.	Понятие механизма и передачи	Формирование умений производить сборку узлов по образцу	Беседа
Сборка простейших механизмов по инструкциям. Механическая передача.	Понятие механизма и передачи	Формирование умений производить сборку узлов по образцу	Коллективное обсуждение конструкций
Моторы набора. Характеристики.	Моторы набора, их характеристики	Сборка узлов с моторами по схеме	Устный опрос.

Конструирование узлов и механизмов с моторами.			
Моторы набора. Характеристики. Конструирование узлов и механизмов с моторами.	Моторы набора, их характеристики	Сборка узлов с моторами по схеме	Устный опрос.
Сборка простейшего робота по инструкции.		Формирование УН сборки робота по инструкции	Опрос.
Сборка простейшего робота по инструкции.		Формирование УН сборки робота по инструкции	Беседа.
Игровой практикум «Выставка роботов»		Формирование инженерного мышления	Коллективное обсуждение конструкций
	Раздел 4. Программировани	е роботов.	
Изучаем интерфейс ПО ZMROBO	интерфейс ПО ZMROBO	Приёмы работы с ПО	Беседа.
Изучаем смартхаб робота.	Смартхаб робота. Способы соединения с ПК.	Формирование УН соединения робота с ПК. Приёмы работы с ПО	Устный опрос
Программируем моторы робота.	Блоки в ПО для моторов	Приёмы работы с ПО	Обсуждение программ
Программируем движение робота. Вперёд – назад. Повороты робота.	Виды траекторий робота.	Формирование УН составлять программы для движения робота	Беседа.
Программируем движение робота. Вперёд – назад. Повороты робота.	Виды траекторий робота.	Формирование УН составлять программы для движения робота	Беседа.
Движение робота по различным траекториям. Циклические алгоритмы.	Материал предыдущих занятий.	Формирование УН составлять программы для движения робота	Коллективный анализ программ.
Движение робота по различным траекториям. Циклические алгоритмы.	Материал предыдущих занятий.	Формирование УН составлять программы для движения робота	Беседа
Игровой практикум «Прохождение трассы»		Закрепление и отработка ЗУН составлять алгоритмы для роботов	Устный опрос.
Датчик силы ZMROBO. Программирование датчика.	Характеристики датчика.	Формирование умения программировать ДС.	Беседа
Датчик силы ZMROBO.	Характеристики датчика.	Формирование умения	Беседа

Программирование датчика.		программировать ДС.	
Ультразвуковой датчик ZMROBO.	Ультразвук в природе и технике. Принцип работы датчика.	Формирование умения программировать УЗД.	Опрос.
Программирование датчика.			
Ультразвуковой датчик ZMROBO. Программирование датчика.	Ультразвук в природе и технике. Принцип работы датчика.	Формирование умения программировать УЗД.	Беседа
Ультразвуковой датчик ZMROBO Программирование датчика.	Ультразвук в природе и технике. Принцип работы датчика.	Формирование умения программировать УЗД.	Устный опрос
Игровой практикум «Мобильные препятствия».	Материал предыдущих занятий.	Закрепление и отработка ЗУН составлять алгоритмы для роботов	Коллективный анализ программ.
Датчик цвета. Режимы его работы. Программирование датчика.	Датчик цвета. Режимы его работы.	Формирование умения программировать УЗД	Устный опрос
Датчик цвета. Режимы его работы. Программирование датчика.	Датчик цвета. Режимы его работы. Режим определения цвета.	Формирование умения программировать УЗД	Коллективный анализ программ.
Датчик цвета. Режимы его работы. Программирование датчика.	Датчик цвета. Режимы его работы. Режим отражённого света.	Формирование умения программировать УЗД	Беседа
Датчик цвета. Режимы его работы. Программирование датчика.	Датчик цвета. Режимы его работы. Режим внешнего освещения.	Формирование умения программировать УЗД	Опрос.
Игровой практикум «Музыкальная шкатулка».	Материал предыдущих занятий.	Закрепление и отработка ЗУН составлять алгоритмы для роботов	Коллективный анализ программ.
Игровой практикум «Царь острова».	Материал предыдущих занятий. Режимы работы ДЦ.	Закрепление и отработка ЗУН составлять алгоритмы для роботов	Коллективный анализ программ.
Алгоритм следования по линии с одним датчиком цвета. Релейный регулятор.	Понятие релейного регулятора. Сложные алгоритмы.	Закрепление и отработка ЗУН составлять алгоритмы для роботов	Устный опрос
Алгоритм следования по линии с одним датчиком цвета. Релейный регулятор.	Понятие релейного регулятора. Сложные алгоритмы.	Закрепление и отработка ЗУН составлять алгоритмы для роботов	Беседа.
	Раздел 5. Соревнования р	оботов.	

Составление программ для	Правила «Кегельринг».	Формирование ЗУН применять	Коллективный
«Кегельринг». Испытание		сложные алгоритмические	анализ
робота и программы.		конструкции	программ.
Игровой практикум.	Правила «Кегельринг».	Формирования умений	Тестирование
Соревнования «Кегельринг».		конструировать роботов.	
		Формирование ЗУН применять	
		сложные алгоритмические	
		конструкции	
Правила соревнований «Сумо	Правила «Сумо»	Формирования умений	Беседа.
роботов». Разработка		конструировать роботов.	
программы и конструкции для			
соревнований «Сумо».			
Подведение итогов			Тестирование